LOGAN BLAINE

he/him/his \$\display lblaine@fas.harvard.edu \$\display +1 (917) 843-5544

EDUCATION

Harvard Medical School Boston, MA

Ph.D. student in Bioinformatics and Integrative Genomics

2020–2026 (Expected)

DISSERTATION ADVISOR: Luca Pinello

RESEARCH INTERESTS: Single cell genomics, functional genomics, Bayesian inference, deep learning

Princeton University Princeton, NJ

A.B. in Molecular Biology, magna cum laude

2014-2018

SENIOR THESIS: "The relationship between epistasis and clustering of amino acid substitutions under simulated purifying selection"

CERTIFICATES: Applications of Computing, Quantitative and Computational Biology

RESEARCH

Harvard Medical School

Cambridge, MA

Graduate Student Researcher

2022 - Present

ADVISOR: Luca Pinello

- Designing statistical methods and deep learning models for the analysis of optical pooled screens
- Developing software to identify differentiation trajectories from single cell ATAC-seq data by using mitochondrial variants as a source of lineage information

Harvard University

Rotation Student

Cambridge, MA

Summer 2021

ADVISOR: Jason Buenrostro

• Demonstrated feasibility of mitochondrial lineage tracing in SHARE-seq (single cell RNA-seq + ATAC-seq) data from cultured hematopoetic stem cells

Harvard Medical School Boston, MA
Rotation Student Spring 2020

ADVISOR: Shamil Sunyaev

• Re-analyzed *de novo* coding variants from the Undiagnosed Diseases Network (UDN) cohort using an inhouse mutational model to test for genes with higher than expected mutation load

Dana-Farber Cancer Institute

Boston, MA

Associate Computational Biologist

2018-2020

ADVISOR: David Pellman CO-ADVISOR: Cheng-Zhong Zhang

- Improved in-house pipelines for calling copy number variants, structural variants, and single nucleotide variants from single cell whole genome sequencing data
- Designed a Hidden Markov Model to detect haplotype-specific loss of heterozygosity in single cells with chromothripsis
- Wrote a variant caller to sensitively identify single-stranded mutations from "bottleneck" duplex sequencing experiments

Princeton University Princeton, NJ

Undergraduate Research Assistant ADVISOR: Peter Andolfatto

2016-2018

- Devised a simulation framework using FoldX to perform *in silico* simulations of protein evolution under physicochemical constraint
- Formulated statistical tests to determine if epistasis is responsible for spatially autocorrelated amino acid substitutions

Princeton University

Princeton, NJ

Summer Undergraduate Research Assistant

Summer 2015

ADVISOR: Martin Semmelhack

• Performed organic synthesis of a solvatochromic fluorophore probe covalently linked to the autoinducing peptide AI-2 from *Staphylococcus aureus*

PROJECTS

Bayesian Modeling and Inference (MIT 6.435)

Winter 2021

TITLE: "Estimating Player Skills in Real-World Communities using Variational Inference"

- Designed a Bayesian hierarchical Bradley-Terry model, inspired by epidemiology, to accurately model chess player strengths when average strength is very different between weakly-connected regions
- Implemented model using Pyro and estimated parameters using stochastic variational inference
- Evaluated predictions on simulated and real data and saw improved accuracy over Microsoft TrueSkill

TEACHING

Teaching Fellow, Harvard Medical School, Concepts in Genome Analysis (BMIF 201) Fall 2021

Undergraduate Teaching Assistant, Princeton University, Organic Chemistry II Spring 2016 – 2017 with Biological Emphasis (CHM304B)

Undergraduate Teaching Assistant, Princeton University, Organic Chemistry I (CHM303) Fall 2015 – 2017

PUBLICATIONS

Papathanasiou S, Markoulaki S, **Blaine LJ**, Leibowitz ML, Zhang C-Z, Jaenisch R, et al. Whole chromosome loss and genomic instability in mouse embryos after CRISPR-Cas9 genome editing. *Nat Commun.* 2021; 12: 5855.

Leibowitz ML, Papathanasiou S, Doerfler PA, **Blaine LJ**, Sun L, Yao Y, et al. Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing. *Nat Genet*. 2021; 53: 895–905.

Umbreit NT, Zhang C-Z, Lynch LD, **Blaine LJ**, Cheng AM, Tourdot R, et al. Mechanisms generating cancer genome complexity from a single cell division error. *Science*. 2020; 368.

HONORS AND AWARDS

Sigma Xi Scientific Research Honor Society Nominee, Princeton University	2018
Summer Undergraduate Research Fellow in Chemistry (SURF-C), Princeton University	2015

CAMPUS INVOLVEMENT AND LEADERSHIP

Bioinformatics and Integrative Genomics (BIG) Student Committee, Founding Member	Summer 2022-
Princeton University Sport Club Executive Council, Vice President	2016–2017
Princeton University Cycling Club, President	2016–2017

SKILLS

PROGRAMMING AND SCRIPTING LANGUAGES: Python, R, C, C++, MATLAB, Java, Perl, HTML/JavaScript, bash LABORATORY TECHNIQUES: Mammalian cell culture, *E. coli* and *S. cerevesiae* screens, protein & DNA gels, PCR LANGUAGES: Upper Intermediate proficiency in Spanish (CEFR Level B2)