Estimating Player Skills in **Real-World** Communities using Variational Inference

Logan Blaine | MIT 6.435 | 5-5-2022

Statistical modeling of paired comparison data

Let $y \in \{0,1\}$ be the result of a *binary paired comparison* between two entities (i, j)

 $y = \begin{cases} 0 & \text{if } j \text{ is preferred over } i \\ 1 & \text{if } i \text{ is preferred over } j \end{cases}$

Bradley-Terry Model (a.k.a. logistic regression)

Assume each entity has a "merit"/"skill" parameter

$$\boldsymbol{\theta} = [\theta_1, \dots, \theta_N]^{\mathsf{T}} \in \mathbb{R}^N$$

Then the outcome *y* is distributed according to:

$$y | \theta_i, \theta_j \sim \text{Bernoulli} \left(\frac{1}{1 + e^{-(\theta_i - \theta_j)}} \right)$$

NETFLIX

Applications

Sports & Games Recommendations & Ads And more...

Simulated data model with regional match disparity and skill disparity

Simulated Matches y: Stochastic Block Model

Simulated Skill Parameters $\boldsymbol{\theta}$

2 clusters with 100 nodes each p(within-group connections) = 0.2p(between-group connections) = 0.01

Microsoft TrueSkill Estimates $E[\boldsymbol{\theta} | \mathbf{y}]$

 $\theta_{red} \sim \mathcal{N}(-2,1)$ $\theta_{blue} \sim \mathcal{N}(2,1)$

Hierarchical Bayesian model of regional skill disparity

Regional Bradley-Terry (B-T)

Each player *i* is assigned to a region $r(i) \in \{1, ..., R\}$, their prior skill is Normal with mean $\mu_{r(i)}$ and variance σ^2

Pyro Bradley-Terry

Pyro Regional B-T

	Bradley-Terry	Regional B-T
Train ELBO	0.622	0.604
Test ELBO	0.673	0.651

Inference using regional model recalibrates rankings across states

