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Abstract 

 

The causes of rate variation among sites within proteins are as yet poorly understood. Here, we 

compare the spatial autocorrelation of non-synonymous substitutions among species within 

diverse phylogenetic groups: Saccharomyces, Drosophila, Arabidopsis, and primates. Across 

these taxa, we find that amino acid substitutions exhibit excess clustering that extends over a 20-

30 codon length (10-20 Angstrom distance) scale. We show that these substitutions cluster more 

strongly and exhibit compensatory dynamics within species lineages but exhibit patterns of 

convergent evolution between lineages. We evaluate a simple model of thermodynamic 

constraints on protein folding and conclude that it is unable to recapitulate the observed spatial 

clustering of substitutions. While pairs of substitutions with the strongest epistasis tend to 

spatially cluster in these simulations, the magnitude and length scale are smaller than that 

observed in real data. Additionally, we show that the pattern of convergent substitution is also 

not expected under this model, suggesting it is likely caused by factors other than these simple 

thermodynamic constraints. Our results support a prevalent role for epistasis and convergent 

evolution in shaping protein evolution across the tree of life.  
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Introduction 

 Evolutionary rate variation is closely linked to protein structure and function, and 

understanding its causes is essential to understanding the mechanistic basis and functional 

relevance of protein evolution [1]. For example, several algorithms used to identify pathogenic 

substitutions in humans employ evolutionary rate variation information [2,3]. However, as most 

of these methods assume a simple model of stabilizing selection and independence among sites, 

a more detailed understanding of the factors contributing to rate variation would likely increase 

the sensitivity and specificity of such approaches [1]. In addition, incorrect assumptions about 

how evolutionary rate varies within and among proteins can lead to incorrect inferences of 

phylogenetic relationships and evolutionary rates [4] and the mode and intensity of selection 

acting on proteins [5–7].	

 Despite its importance, the causes of evolutionary rate variation among proteins and 

among sites within proteins are currently not well understood [8]. A number of studies have 

examined correlations between various protein properties and differences in evolutionary rate 

variation [9–11]. These studies have identified structural properties such as relative solvent 

accessibility, weighted contact number, and protein flexibility as major determinants of 

evolutionary rate [8]. Broadly speaking, the interiors of proteins, with higher levels of contact 

with other residues and more physical constraints, exhibit higher levels of evolutionary 

constraint. Beyond their structural integrity, proteins are additionally constrained in terms of 

their functional requirements. Not only is the active site of proteins highly constrained, constraint 

decreases roughly linearly with distance from the active site [12,13]. Despite studies on variation 

in constraint, there has been a relative dearth of studies investigating the effect of interactions 

among amino acid residues on evolutionary rate variation within proteins. While properties such 
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as relative solvent accessibility and weighted contact number depend on interactions between 

amino acid residues, it is surprising that the direct effect of interactions between amino acids on 

evolutionary rate variation has not been more studied.  

Emerging evidence suggests that genetic interactions among amino acid residues within a 

protein, called “intramolecular epistasis”, are a strong determinant of patterns of protein 

evolution [14]. Epistasis refers to a broad genetic phenomenon by which the phenotypic or 

fitness effects of given substitutions are dependent on the genetic background on which they 

arise [15]. Given that steric and allosteric physical interactions among amino-acid substitutions 

within a protein are common, it follows that biochemical and evolutionary fitness effects of 

amino acid substitutions can be sequence-context dependent [16,17]. This view of constraints on 

protein evolution was first formulated as the “covarion” model [18], which proposes that only a 

limited number of amino acid substitutions can be tolerated on the current background of a 

protein, and that each substitution changes the pool of subsequently tolerable substitutions.  

Covarion-like epistasis models are relevant to understanding protein evolution in two 

contexts. Firstly for its implications for how Darwinian positive selection is expected to proceed 

in the evolution of proteins with new or enhanced functions [19–22]. However, similar epistatic 

constraints can also be relevant to neutral (or nearly-neutral) protein evolution [23–25]. 

Specifically, epistasis can limit protein evolution under either scenario by enforcing a limited set 

of viable substitutions, such that each substitution still results in a functional protein [22]. While 

primarily explored by simulation in the context of constraints on protein folding [24,25], 

covarion-like models have been shown to be consistent with molecular evolutionary patterns 

observed in a number of proteins, including bovine RNase, cytochrome C, and Cu, Zn 

superoxide dismutase [18,26,27] and supported by functional experiments on proteins involved 
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in antibiotic resistance [22], steroid-receptor ligand specificity [28], viral immune escape [19] 

and toxin-insensitivity [29].  

Since direct contacts between amino acid residues are the most obvious source of 

interactions, and primary sequence is a strong predictor of physical proximity in three-

dimensional protein structures [30], one might expect that epistatic effects among amino acid 

substitutions could contribute to local spatial evolutionary rate variation. Intriguingly, the 

analysis of small datasets of compensatory substitutions in proteins revealed that they tend to 

spatially cluster within proteins [31,32]. 

Two studies that have explored the spatial autocorrelation of non-synonymous 

substitutions using genome-scale data and came to remarkably similar conclusions [30,33]. 

Specifically, both studies confirmed that non-synonymous substitutions cluster spatially within 

proteins and that the degree of constraint in the protein is positively correlated with the strength 

of clustering [34]. Callahan et al. [30] further used closely-related Drosophila species to show 

that clustering is more pronounced for pairs of amino-acid substitutions that occur in the same 

species lineage and that there is an enrichment of charge-compensating substitution pairs on a 

length scale of ~20 codons, strongly implicating epistasis as a contributing factor. Intriguingly, 

the analysis of Callahan et al. [30] also found an enrichment of charge-reinforcing substitution 

pairs occurring in different lineages over a similar length scale, suggesting convergent 

evolutionary dynamics may also contribute to clustering. 

Studies of genomic patterns of amino acid substitution clustering have thus far been 

carried out in Drosophila which are obligately sexual species with large population sizes that 

exhibit strong signatures of adaptive protein evolution [35]. However, such patterns are not 

observed as strongly in other taxa. To evaluate the generality of patterns of clustered amino acid 
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substitutions and their link to compensatory, convergent, and adaptive evolution, we investigate 

clustering patterns in a diverse set of four taxonomic groups, comprising Saccharomyces, 

Drosophila, Arabidopsis, and primates, which vary broadly in mating system, population size, 

and other population genetic parameters. We also carry out simulations of constraint on protein 

folding to ask whether such constraints may be sufficient to explain observed patterns of amino 

acid clustering.  

 
 
Results 

 Using multisequence alignments of Saccharomyces, Drosophila, primates, and 

Arabidopsis, we evaluate whether the patterns of spatially clustered non-synonymous 

substitutions observed in Drosophila are generalizable to other diverse taxa. To quantify spatial 

clustering, we measure the observed number of pairs of: two non-synonymous substitutions 

(DNDN) and two synonymous substitutions (DSDS) at each distance, x, in codons, compared to 

the null distribution of randomly distributed substitutions. Our clustering metric has an intuitive 

interpretation: it describes the increased likelihood of observing a second substitution of a certain 

type, conditioned on an initial mutation separated by x codons. Furthermore, we see an 

enrichment in this score, typically peaking at x = 1 and decreasing over approximately 20 

codons. Following the convention of Callahan et al., we refer to this as “clustering” [30]. 

 

Clustering of non-synonymous substitutions occurs in all four taxa 

 In all pairwise comparisons within the four taxa, we observe a peak in our clustering 

metric for DNDN at the adjacent amino acid with respect to the focal substitution. From here, the 

clustering rapidly decreases over roughly 20 codons. In fact, in both Saccharomyces and 
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Drosophila, there is a nearly 1.7 times increased chance to find an adjacent non-synonymous 

substitution, conditional on a focal non-synonymous substitution, relative to the baseline rate of 

non-synonymous pairs 100 codons apart. This clustering in the Drosophila clade recapitulates 

the findings of Callahan et al. [30], and further extends the finding to Saccharomyces, primates, 

and Arabidopsis. 

 Notably, DSDS shows far less clustering compared to DNDN. In Saccharomyces, DSDS 

shows no clustering, while Arabidopsis, Drosophila, and primates show a slight clustering peak 

(Figure 1). This is largely consistent with a pattern of uniformly distributed synonymous 

substitutions. This indicates that the clustering observed is a phenomenon relevant to the protein 

sequence itself, given that only DNDN strongly shows this clustering pattern. These results are 

consistent with a model in which amino acid substitution pairs interact and experience selection 

at the protein level.  

By quantifying clustering at the level of primary sequence, we are assuming that distance 

along the primary sequence is a good proxy for 3D distance in folded protein structures [30]. To 

verify this, we calculated clustering using the atomic distance (in angstroms) between the alpha 

carbon in the amino acid residue. Protein structures were available for only 37% and 38% of 

proteins in our primate and Saccharomyces datasets, respectively. Despite this limitation, both 

Saccharomyces and primates (the only two taxa for which sufficient 3D data exists), non-

synonymous substitution pairs cluster over 10-20 Å distance while synonymous pairs do not. 

Additionally, distance in the primary sequence correlated with distance in 3D space, particularly 

for substitutions on a length scale of 20 codons (Figure 2).  
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Non-synonymous substitutions cluster more strongly within a species lineage than between 

lineages. 

While we have shown (above) that species-distinguishing amino acid substitutions cluster 

in sequence and 3D structural space, such patterns could result from simple variation in 

evolutionary constraint related to protein domain structure and function. Thus, following [30], 

we next consider the spatial pattern of substitutions along species lineages. Substitutions were 

polarized into the species lineage in which they arose with an appropriate out group, using a 

parsimony-based method. We repeated the clustering analysis using only substitutions from one 

lineage to calculate within lineage clustering, while between lineage clustering was calculated 

using a focal substitution from one species and a second substitution from the other species. 

Amino acid clustering between lineages must be independent events so between lineage 

clustering can only be explained by a shared property, like reduced constraint, between 

homologous proteins. Thus, we would expect between lineage clustering to be roughly equal to 

within lineage clustering if these patterns were due solely to a reduction in constraint in certain 

regions of proteins.  

 In all four taxa, clustering is observed both in within lineage and between lineage 

clustering and as before, clustering peaks at x = 1, and decreases over the next 20 codons. In 

Saccharomyces, Arabidopsis, Drosophila, and primates, within lineage clustering is consistently 

greater than between lineage clustering. Additionally, in both Saccharomyces and Drosophila, 

within-species clustering excess appears to be approximately equal. Interestingly, P. pygmaeus 

abelii show drastically higher amounts of within lineage clustering, even compared H. sapiens, 

though these results are relatively noisy (Figure 3). This pattern of elevated within-lineage 
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clustering is consistent with a model in which reduced constraint in certain regions of proteins is 

responsible for some, but not all, of the clustering pattern we observe. 

 

Evidence for compensatory charge changes within lineages and convergent evolution. 

 We considered properties such as amino acid charge, polarity, and size and looked for 

consistent, repeated patterns of clustering among substitutions causing changes of these 

properties. For example, if one amino acid substitution is positive with respect to the ancestral 

state, another nearby amino acid may become negative with respect to the ancestral state to 

compensate for this change. Alternatively, if this second amino acid substitution is positive with 

respect to the ancestral state, this pair of amino acids would reinforce the charge change. We 

term these two possibilities as compensatory and reinforcing pairs of substitutions, respectively. 

To test this, the fraction of polarized, non-synonymous substitutions pairs, resulting in either 

compensatory or reinforcing charge changes were analyzed.  

 In three of the four taxa (Saccharomyces, Drosophila, and Arabidopsis), there is a clear 

pattern of enrichment of charge compensating pairs, over a length scale of 5-15 codons. This 

clustering, however, only occurs within lineage, while there appears to be no clustering between 

lineages. Furthermore, in these three taxa, roughly 7-8% of non-synonymous pairs are charge 

compensating, compared to the observed baseline of approximately 5% that appears to be largely 

consistent at greater length scales (>20 codons). This suggests that maintenance of local charge 

within a protein is an important factor affecting protein evolution. 

  In contrast, when looking at pairs of substitutions with reinforcing charge changes, the 

opposite pattern appears. No obvious reinforcing clustering can be observed within lineage, but 

reinforcing clustering is observed between lineage. Again, this pattern is found in 
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Saccharomyces, Drosophila, and Arabidopsis, but not in primates. Similar to compensatory 

clustering, reinforcing clustering peaks at x = 1, and is observed over 5-15 codons (Figure 4). 

This reinforcing clustering indicates that similar molecular changes are occurring in similar 

regions in homologous proteins, suggesting that molecular convergent evolution may be wide-

spread or alternatively that certain regions within proteins are tolerant to certain types of 

substitutions. We observe similar, though less obvious, patterns for both size and polarity 

reinforcing and compensatory clustering in Saccharomyces, Arabidopsis, and Drosophila. 

However, this within lineage, size compensating clustering appears to be mostly absent in D. 

melanogaster (Supplementary Figure 1 & 2).  

 

Simulations reveal that selection to maintain folding stability is unable to quantitatively 

recapitulate clustering 

 Given that we observe widespread compensatory clustering (mostly for charge), we 

wanted to disentangle whether these changes were due to purifying selection working to 

maintain the protein function or positive selection. To this end, we used FoldX [36] to calculate 

the change in folding energy of simulated substitutions in three proteins as a proxy for fitness. 

We chose the lysine-, arginine-, ornithine-binding protein (1LAF), NmrA-like family domain 

containing protein 1 (2WM3), and mini spindles TOG3 (4Y5J) for our simulations (PDB ID is 

given in parentheses). We shall refer to these proteins by their IDB ID from this point forward 

for brevity.  

We first assessed whether FoldX was able to effectively simulate epistasis caused by 

selection by simulating pairs of substitutions, selecting for wild-type folding energy. We 

compared the DDG1 + DDG2 against the DDG1,2, that is, the change in folding energy between the 
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sum of the first and second substitutions alone against the change in folding energy of the double 

mutant. Under a purely additive model, we would expect DDG1 + DDG2 to be equal to DDG1,2. 

When we simulate selection toward wild type folding stability, the correlation coefficient 

between the additive change in folding energy of the single mutants vs the double mutant is r2 = 

0.62 with a slope of 0.79, indicating some level of non-additivity, or epistasis between 

substitutions (Figure 5). This pattern holds for each of the proteins individually so this pattern is 

not being driven by any one protein (Supplementary Figure 5). We also examined the 

distribution of substitutions across the proteins, and found a non-uniform distribution of 

substitutions, as expected, given that different sites should have different levels of constraint 

(Supplementary Figure 4).  

 Given that FoldX was able to simulate epistasis, we conducted simulations of pairs of 

substitutions, again in a stepwise fashion, selecting to maintain wild type folding energy. We 

reasoned that FoldX would be able to more accurately calculate the change in folding energy 

given fewer simulated substitutions. This had the additional benefit of speeding our simulations 

so we could gather a larger sample. Our clustering metric was centered around 1, and we did not 

observe clustering either overall or when accounting for clustering that might be due to variation 

in protein constraint (Figure 5).  

 Lastly, we wanted to know whether epistasis was sufficient to cause clustering; or in 

other words, would a subset of substitutions that display epistatic interaction be clustered 

spatially. We filtered for the most epistatic pairs of substitutions; ones with a non-additive DDG 

(|DDG1 + DDG2 - DDG1,2| >> 0). In the subset containing the 90th percentile of the most epistatic 

pairs, we found clustering patterns that were similar to the ones we observed in the real data: the 

distribution peaked at the adjacent amino acid at approximately 1.5 and decreased over the next 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2020. ; https://doi.org/10.1101/2020.08.05.237594doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.05.237594
http://creativecommons.org/licenses/by-nd/4.0/


  

10-15 amino acids (Figure 5). This indicated approximately 50% more substitutions at the 

adjacent amino acid than would be expected due solely to selective constraint. Furthermore, we 

observed that filtering out epistatic substitution pairs disproportionately removed pairs that were 

“far apart”, more than ~15 codons away (Supplementary Figure 8). 

 
 
Discussion 

 In this study, we show that amino acid substitutions tend to alter the local evolutionary 

rate across a protein, leading to an accumulation of proximate amino acid substitutions. This 

clustering peaks at the adjacent amino acid and decreases over a span of approximately 20-30 

codons. As we expect selection acting on amino acid substitutions is driving the clustering we 

observe, the fact that we observe very little clustering of and DSDS is reassuring. However, 

clustering could also be due to hitchhiking of nearly-neutral substitutions along with a positively 

selected substitution, multi-nucleotide mutation (MNM) events, or decreased constraint in 

regions of proteins. This is unlikely, however, as MNM are expected to occur over quite short 

length scales [37]. Furthermore, we can eliminate hitchhiking as a driver of the clustering pattern 

we observe, as this would affect synonymous substitutions as well. We ultimately conclude that a 

non-negligible amount of the clustering we observe is driven by selection.  

 Another possible cause of this clustering could be variation in constraint among 

functionally coherent domains of proteins. For example, the active site of proteins tends to be 

highly conserved, while amino acid residues on the exterior of globular proteins are less 

constrained [9–13]. If this were the case, we would expect substitutions to cluster in the same 

unconstrained regions across our multi-species alignments. When calculating clustering across 

lineages, we break any interactions that may occur between amino acid substitutions. We find 
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that amino acid substitutions cluster more strongly within lineage than between lineage, showing 

that clustering does not occur solely as a result of an accumulation of substitutions within 

unconstrained regions of proteins. Thus, we expect the excess within-lineage clustering to be due 

to interactions between amino acid residues, driven by selection on these epistatic interactions.  

Previous studies support these findings as they have noted similar patterns of 

substitutions co-occurring spatially more frequently than expected if the substitutions had 

occurred randomly. Two studies found that in HIV evolution and mouse-rat divergence, even 

within a single codon, double and triple substitutions occur at a higher rate than expected 

[38,39]. Other studies have also found longer-range signals of co-occurring substitutions. For 

example, two studies found that non-synonymous substitutions auto-correlate spatially along the 

primary sequence of proteins, while synonymous ones do not [30,33]. It has been shown that 

such compensatory substitutions cluster both with one another and are also nearby the 

deleterious substitution, which could be one explanation of the clustering pattern we observe 

[31].  

One key assumption we make is that distance along the primary sequence is a good proxy 

for distance in 3D space. While a high correlation exists between distance in primary sequence 

with distance in 3D space at short length scales (Figure 2, and see [30]), as an additional sanity 

check, we calculated 3D clustering in Saccharomyces and primates (Figure 2). Indeed, we found 

that substitutions tend to cluster over ~10Å distances, confirming that clustering occurs between 

proximate residues and that primary sequence distance is a reasonable proxy for 3D distance.  

Next, we chose to examine whether there are any trends with respect to the amino acid 

property changes and found that there are a greater than expected number of charge 

compensating substitution pairs within a lineage that occur in a 5-15 codon window. Previous 
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studies have observed charge compensation in evolution that are consistent with this finding. In 

influenza evolution, an arginine residue and glutamic acid residue (positively and negatively 

charged, respectively), are both substituted with glycine, a neutrally charged amino acid [19]. 

These amino acids are separated by 9 residues and these changes would maintain the local 

charge of the protein. Similarly, in rat RNase A, adjacent amino acid residues glycine and serine 

are, in bovine RNase A, aspartate and arginine, respectively [26]. Fitch and Markowitz speculate 

that this transition is only possible because the negative charge of aspartate and positive charge 

of arginine neutralize one another, preventing from disrupting other residues that are important 

for protein function. In addition to the compensatory charge clustering that is consistent with the 

literature, we find that charge reinforcing substitution pairs are overrepresented between 

lineages. This seems to indicate that similar types of substitutions are occurring between the two 

species, which could be an indication of parallel or convergent evolution. Alternatively, it could 

indicate that regions of proteins are only tolerant to certain types of substitutions, but this would 

also be evidence of epistatic interactions between these substitutions and the entire protein.  

Similarly, we found size compensating clustering in three of the four taxa we examined. 

This is also consistent with previous findings: Fitch and Markowitz [26] observed in rat RNase 

A, an isoleucine and leucine, while bovine RNase A had a valine and methionine. In this 

example, the volume of the pair of amino acid residues is maintained, as valine is a smaller 

amino acid than isoleucine, while methionine is larger than leucine. However, we find that the 

patterns of compensatory and reinforcing clustering for size and polarity are less apparent than 

for charge. This may indicate that amino acid charge is more important than size and polarity in 

influencing protein evolution. 
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Previous studies have shown that maintaining the stability of proteins through epistasis 

can be an important factor in evolution. For example, a substitution that increases the stability of 

a protein may not have much of a fitness effect, as the protein is already sufficiently stable to 

function, but it may rescue the effect of a deleterious, destabilizing mutation [19]. Despite this 

expectation, we were unable to recapitulate any clustering signal in our simulations of protein 

folding stability using FoldX. While we do find significant clustering once we subset pairs of 

substitutions that interact epistatically, the magnitude and length scale of this clustering are 

smaller than observed in real data. This seems to indicate that, while purifying selection to 

maintain the folding-stability of the protein via epistasis does cause substitutions to spatially 

auto-correlate, it seems unlikely to be a significant contributor to the within-species 

compensatory dynamics and between species convergence among proximate substitution 

documented here.  

On the whole, this may not be surprising given a few important caveats of our 

simulations. The most notable among these is that, given limits on our ability to computationally 

model folding-stability, we carried out simulations for three short proteins that may not be 

particularly representative. In fact, the proteins we selected for simulation are shorter than any of 

those we used to calculate clustering. Also, while thermodynamic constrains are important to 

protein function (for example see [19]), it is possible that they are a poor proxy for fitness, as 

there are other factors that contribute to protein function. Simulations of folding-stability do not 

account for critically important constraints near ligand-binding sites and or sites important for 

protein-protein interactions, as would be important for modelling, for example, hemoglobin 

[40,41]. 
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An interesting alternative explanation for the patterns of within-lineage spatial clustering 

of substitutions is that they may reflect dynamics associated with adaptive evolution. For 

example, adaptive amino acid substitutions for resistance to cardiac-glycoside toxins have often 

been documented at ATPa (a subunit of Na+,K+-ATPase) in variety of insect species that feed 

on plants that produce these compounds [42,43]. In many cases, this involves repeated 

occurrences of three amino acid-substitutions that are within 11 residues of each other [29]. 

While two of these substitutions were previously known to confer cardiac glycoside-resistance to 

the protein (reviewed in [42]), both normal enzyme activity and overall animal fitness depend on 

a “permissive” substitution at the third site. Similar interactions among proximate substitutions 

in an adaptive context have been observed for the nicotinic acetylcholine receptor resistance to 

epibatidine in Neotropical poison frogs and high-altitude adaptation of hemoglobin in birds as 

well as pikas [40,41,44]. The frequency of adaptive protein evolution in Drosophila [35,45] 

suggests that this scenario is plausible, however it’s importance in yeast [46], Arabidopsis [47], 

and humans [48] is less clear. Distinguishing between adaptive and non-adaptive causes for 

within-lineage amino acid substitution clustering will be an interesting topic for future 

investigations.  
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Methods 

 

Alignments. 

 We used multisequence, coding sequence (CDS) alignments from four different 

taxonomic groups in this analysis: Saccharomyces, Drosophila, Arabidopsis, and primates. The 

Saccharomyces dataset consisted of five species: S. cerevisiae, S. paradoxus, S. kudriavzevii, S. 

mikatae, and S. bayanus from http://www.saccharomycessensustricto.org/cgi-

bin/s3.cgi?data=Orthologs&version=current[49]. After removing CDS alignments lacking a 

Saccharomyces Genome Database (SGD) name and removing CDS alignments with duplicated 

SGD names, 5,155 genes remained 4,291 (83%) of which passed our filtering criteria and were 

used in the clustering analysis. From the Saccharomyces dataset, we quantified clustering in S. 

cerevisiae vs S. mikatae using S. kudriavzevii as the outgroup. The Arabidopsis dataset consisted 

of 16,263 CDS alignments for three species. Of these 16,263 genes, 13,234 (81%) passed our 

filtering criteria and were used in the clustering analysis. We quantified clustering in A. lyrata 

and A. thaliana using C. rubella as the outgroup [50]. The primate data consists of a subset of the 

20 species alignment from the UCSC genome browser (UCSC Genome Browser: 

https://hgdownload.soe.ucsc.edu/goldenPath/hg38/multiz20way/). This dataset consistent of 

37,372 transcripts and after selecting the longest transcript that also passed our filtering criteria, 

9,516 genes remained. We quantified clustering in Human (Homo sapiens) and Orangutan 

(Pongo pygmaeus abelii) using Gibbon (Nomascus leucogenys) as the outgroup. Clustering 

analyses were performed in Python (code available at: 

https://github.com/andrewtaverner/clustering), using Biopython to parse the multisequence CDS 

alignments [51].  
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 The Drosophila dataset was the only dataset for which a multispecies CDS alignment did 

not exist so we created a multispecies alignment for this taxa from reference genomes. The 

Drosophila dataset consisted of three species: D. melanogaster, version 6.11 from FlyBase [52] 

and de novo assemblies of D. simulans w501 and D. yakuba Tai18E2 (Reilly, Deitz, et al., in 

prep). We identified homologous proteins using a reciprocal best exonerate approach [53]: D. 

melanogaster proteins were used to align and extract proteins from each genome reference 

sequence and the resultant proteins were aligned back to the D. melanogaster genome to verify 

the same protein was returned. The longest D. melanogaster transcript was selected for each 

gene and PRANK was used to create multispecies CDS alignments using the “codon” setting 

[54]. This resulted in 13,169 CDS alignments, of which 11,496 (87%) passed the filtering criteria 

and were used in the clustering analysis. From this alignment, we quantified clustering in D. 

melanogaster and D. simulans using D. yakuba as the outgroup. 

 To insure high-quality alignments, several filtering criteria were imposed on each CDS 

alignment. 1) The length of the alignment must be a multiple of three and must not contain 

premature stop codons. 2) Any gaps in the alignments must be a multiple of 3 nucleotides in 

length, so frameshifts are not introduced. 3) Amino acid substitutions must comprise less than 

20% of the protein, as rates higher than this likely indicate an incorrect alignment. 4) Gaps must 

comprise less than 20% of the alignment length, as a proxy for genome assembly quality.  

 

Clustering calculations. 

 For each protein alignment, we identified codons containing either a synonymous (DS) or 

non-synonymous substitution (DN) between each pair of species. Each codon is allowed to 

contain only one substitution and we do not attempt to identify the order in which the 
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substitutions occurred. In other words, a codon may have two or three nucleotide substitutions, 

but it is only considered a single DN or DS. To calculate DNDN and DSDS clustering, for each 

protein, we take all pairs of non-synonymous substitutions or synonymous substitutions, 

respectively, and calculate the distance, in codons, between each pair. After calculating the 

distances between all pairs of DNDN and DSDS for each protein, genome-wide, we count the 

number of pairs separated by x codons, for x Î [1,500], to get a non-normalized clustering score 

for each x. This clustering score for DNDN and DSDS of each protein is normalized by the 

analytical expectation for all pairs of distances between uniformly distributed substitutions as  

𝑚(𝑚 − 1)
𝑔 − 1 −

𝑚(𝑚 − 1)
𝑔(𝑔 − 1) 𝑥,																																			(1) 

where m is the number of codon substitutions (either DN or DS) and g is the protein length in 

codons.  

This equation was verified by simulation of substitutions sampled from a uniform 

distribution, without replacement. This clustering metric was further normalized by the average 

clustering score over an 80-120 codon window. The correlation between distance in the primary 

sequence and distance between alpha carbons in the 3D folded proteins breaks down well before 

an 80 codon length scale (Figure 2), thus we do not expect to observe clustering at this length 

scale. Furthermore, the clustering distribution asymptotes at this length scale, matching our 

hypothesis. In all plots, data was smoothed with a sliding-window average of 5 codons. This 

clustering metric is an aggregated, genome-wide metric which makes it difficult to identify 

specific genes with above-average clustering scores. We calculate significance of DNDN over 

the first 20 codons using a chi-square goodness of fit test where our expectation is based either 

on the null distribution of uniformly distributed mutation (described in equation 1) or DSDS, as 

this is meant to be a control.  
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Quantification of clustering using protein structures. 

To check that distance in codons along the primary sequence is a good proxy for distance 

in the folded protein, we calculated clustering with distance in 3D space as our distance metric 

for Saccharomyces and primates. We downloaded all the PDB files associated to S. cerevisiae 

and H. sapiens from www.rcsb.org. PDB files were parsed using the PDB module of Biopython 

[55]. CDS alignments were matched to their corresponding 3D structure information based on 

each gene’s associated PDB ID and Chain ID. The sequence within the PDB file was verified 

against the CDS alignment sequence. In cases where there were multiple PDB files for a given 

gene, the PDB file containing the longest sequence was used and when there were multiple of 

these, one was chosen arbitrarily. This resulted in a total of 1,628 genes (38%) and 3,479 genes 

(37%) that we were able to use to quantify 3D clustering in Saccharomyces and primates, 

respectively. Clustering was repeated as before, first by identifying synonymous and non-

synonymous sites, then calculating the distance in angstroms between each pair of synonymous 

sites and non-synonymous sites. The number of DNDN and DSDS in bins of 2Å were counted. 

The normalization for 3D DNDN and DSDS was calculated by counting the total number of all 

pairs of amino acid residues in 2Å bins and normalizing this to the observed number of DNDN 

or DSDS.  

 

Lineage-specific clustering. 

To break the dependence of substitutions on one another, we can polarize substitutions 

into the lineage in which they arose and then calculate clustering between lineages. This will 

measure clustering due to lack of constraint since substitutions between species cannot interact 
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with one another. Thus, the within-lineage clustering in excess of between-lineage clustering 

should be due exclusively to interactions between substitutions. Following previous work [30], 

we used an outgroup to polarize substitutions into the lineage in which they arose using 

parsimony (such that the number of substitutions that occurred ancestrally was minimized). 

Substitutions that could not be polarized were omitted from further analysis. DNDN was 

calculated within and between species pairs. To calculate within species DNDN, we take all pairs 

of non-synonymous substitution within one species and count the number of pairs separated by 

each distance, in codons, for x Î [1,500]. Again, this distribution is normalized by the null 

distribution of uniformly distributed substitutions, as given in equation 1. To calculate between 

species DNDN, we take all pairs of non-synonymous substitutions such that the two substitutions 

are from different species and count the number of pairs at each distance for x Î [1,500]. We 

then normalize this by the analytical distribution of the pairs of two different “types” of 

substitutions, where each type is uniformly distributed as  

2 +
𝑚𝑛
𝑔 − 1 −

𝑚𝑛
𝑔(𝑔 − 1) 𝑥-,																																						(2) 

where m is the number of DN in species one, n is the number of DN in species two, and g is the 

protein length. We are mainly interested in the within species clustering significantly in excess of 

between species clustering. Thus, we calculate the significance of within species clustering over 

the first 20 codons using a chi-square goodness of fit test using between species clustering as our 

expectation. 

Since we observe an excess of within-lineage clustering, we wanted to examine whether 

certain classes of amino acid substitutions were over represented in the non-synonymous 

clustering we previously observed. To that end, we examined three properties of amino acids, 

size, polarity, and charge, and classify each non-synonymous substitution as increasing or 
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decreasing the previously mentioned properties. Then, we can classify each pair of non-

synonymous substitutions as compensatory or reinforcing. We represent compensatory and 

reinforcing pairs of substitutions as the fraction of DNDN in which the change in the substituted 

amino acid are anti-correlated (compensatory) or correlated (reinforcing). To calculate the 

significance of within species compensatory clustering, we use a chi-square contingency table to 

compare the frequency of compensatory pairs within species to the frequency of compensatory 

pairs between species over the first 10 codons. The same was done for reinforcing clustering. We 

used 10 codons as the length-scale of clustering appeared to be shorter.  

 

Simulations of protein-folding stability. 

To address the extent to which purifying selection plays a role in the clustering signal, we 

conducted simulations where we maintained the folding energy of the protein (as a proxy for 

protein function/fitness) to explore whether we could recapitulate clustering due to epistasis 

under a model of exclusively purifying selection. FoldX, a forcefield-based protein simulation 

software package, was used to calculate the folding energy of proteins with substitutions, as it 

has been previously used to simulate epistasis [25].  

Previous studies show that FoldX is more accurate when predicting folding energy for 

small proteins so we chose to simulate substitutions in three, short, monomeric proteins: Lysine-, 

arginine-, ornithine-binding protein from Salmonella typhimurium; NmrA-like family domain 

containing protein 1 from Homo sapiens; and Mini spindles TOG3 from D. melanogaster, 

corresponding to PDB IDs: 1LAF, 2WM3, and 4Y5J, respectively. Additionally, these proteins 

had no missing residues in their PDB files, low clashscores, and few sidechain outliers, making 

them well-suited for FoldX simulation. Lastly, these proteins have broadly differing geometries: 
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1LAF is globular while 4Y5J has a more linear structure and 2WM3 is intermediate between the 

two. This can be seen from the plots of distance measured in codons (along the primary 

sequence) vs distance in 3D folded space (Figure S3). 

Protein structures were downloaded from www.rcsb.org using the aforementioned PDB 

IDs. We followed the methodology from Shah et al. [25]; in brief, the protein structure was 

preprocessed with RepairPDB, and BuildModel was used to estimate the change in the folding 

energy of the protein as a result of the substitution we simulated.  

To simulate substitutions, we started from the wild-type protein sequence, generated 10 

single amino acid mutations (with the restriction that the new mutations could not revert the 

previous), and calculated the change in free folding energy of each mutant (DDG). We then 

calculated a probability of fixation for each mutant using a Gaussian fitness function, 

𝑓 =
1

√2𝜋𝜎3
𝑒5

6678
398 ,																																															(3) 

and a standard Moran process, 

𝑝<→> =
1 − 𝑓<

𝑓>

1 − ?𝑓<𝑓>
@
AB ,																																														(4) 

where s 2 = 1450 and Ne = 10,000 [25]. The probability of fixation, 

𝑃(𝑥 → 𝑦) =
𝜋(𝑥 → 𝑦)
∑ 𝜋(𝑥 → 𝑧)H

,																																		(5) 

was scaled to 1. At each step, the mutant is selected randomly, proportional to its fixation 

probability. This process is repeated for the desired number of substitutions (two). We 

additionally conducted simulations using a piecewise fitness function, in which decreased 

stability is given a fitness penalty, while increased stability has equivalent stability to wild type. 
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We calculated clustering for the simulations as we did in the real data, using equation 1. 

We additionally wanted to calculate clustering due solely to epistasis. That is to say, controlling 

for clustering due to reduced constraint along the protein sequence. We calculated the null 

distribution of clustering due to constraint by resampling the first and second substitutions 

separately to remove any epistatic interactions between the pair and used this to normalize the 

mutation pair clustering. Finally, to enrich for pairs of substitutions with increased levels of 

epistatic interactions, we ordered pairs based on the difference between the additive DDG of the 

single mutants vs the double mutant: JΔΔ𝐺M + ΔΔ𝐺3 − ΔΔ𝐺M,3J and selected the top n% of them.  
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Figures 

 
Figure 1: Non-synonymous substitutions cluster spatially within proteins compared to 
synonymous substitutions. Clustering of non-polarized substitution pairs: two non-synonymous 
(DNDN – green) and two synonymous (DSDS – blue). Non-synonymous substitutions show 
significant clustering compared to uniform expectation (𝑝 < 105QRR, except for primates: 𝑝 =
1.1 × 105MRU) and compared to the distribution of synonymous substitution clustering (𝑝 <
105QRR, except for primates: 𝑝 = 2.6 × 105WX). These distributions represent the increased 
likelihood of observing a second substitution, conditional on a focal one, x codons away, 
normalized to 1 at long-codon distance. In all four taxa, DNDN peaks at x = 1, indicating that the 
maximum chance of observing a second non-synonymous substitution, given a focal non-
synonymous substitution, occurs at the adjacent amino acid. Furthermore, DNDN clustering 
rapidly decreases over a 20-30 codon length scale. DSDS serves as a control, and reassuringly, 
show little or no clustering. Raw data is indicated with a “+”; lines are smoothed using a 5-codon 
sliding window. Non-polarized clustering is shown for the following comparisons: S. cerevisiae 
and S. mikatae; D. melanogaster and D. simulans; A. thaliana and A. lyrata; H. sapiens and P. 
pygmaeus abelii. 
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Figure 2: Top row: Using angstroms as the distance metric between amino acids (instead of 
using codons as a proxy) recapitulates the findings in Figure 1: non-synonymous substitutions 
tend to be clustered, while synonymous ones do not. 3D Clustering is shown for Saccharomyces 
(S. cerevisiae and S. mikatae) and primates (H. sapiens and P. pygmaeus abelii). Distances 
between amino acids are binned in 2Å increments. No mutations were observed in the primate 
data for the 0-2 Å bin, due to the rarity of substitutions at this small length scale and the lack of 
available data (i.e. the 3D structure of the protein was resolved and the gene alignment passed 
filtering critera). Bottom row: Distance in 3D space in Å vs distance in primary sequence in 
codons. The relationship is shown for Saccharomyces (dashed line) and primates (solid line). 
Median distance (dark blue) and 1st and 3rd quartiles (light blue) are shown. Together, this 
suggests that using distance between amino acids in codons is a good proxy for distance in 3D 
space. 
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Figure 3: Pairs of non-synonymous are more clustered when they both occur within a species 
than when they occur between species. Pairs of non-synonymous substitutions occurring within 
in the same species shown in green and orange. Pairs occurring between species are shown in 
blue. In all four taxa, within species clustering is significantly greater than between species 
clustering, indicating an excess of within species clustering (𝑝 < 105Y, except for within H. 
sapiens clustering, for which 𝑝 = 0.01. See Table S2 for exact values). Calculating between 
species clustering breaks any interactions the substitutions might have on one another, thus 
elevated within-species clustering is consistent with a model in which substitutions interact with 
one another. Again, raw data is shown with a “+”; lines are smoothed using a 5-codon sliding 
window. Substitutions are polarized into the lineage in which they arose using parsimony and an 
appropriate outgroup: S. cerevisiae and S. mikatae, outgroup: S. kudriavzevii; D. melanogaster 
and D. simulans, outgroup: D. yakuba; A. thaliana and A. lyrata, outgroup: C. rubella; H. 
sapiens and P. pygmaeus abelii, outgroup: P. anubi
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Figure 4: Pairs of non-synonymous substitutions causing compensatory charge changes are 
clustered within species. In contrast, pairs of non-synonymous substitutions causing reinforcing 
charge changes are clustered between species. The top row of panels show the fraction of charge 
compensating pairs of non-synonymous substitutions (A, B, C, D), while the bottom row show 
the fraction of charge reinforcing pairs of non-synonymous substitutions (E, F, G, H). Again, 
pairs occurring within species are shown in green and orange, while pairs occurring between 
species are shown in blue. Compensatory charge changes tend to be significantly clustered 
within a species lineage, but not between lineages. In contrast, reinforcing changes are tend to be 
significantly clustered between species but not within species. P-values are indicated in the 
legend by: ** 𝑝 < 105MR; * 105MR < 𝑝 < 0.05. (See Table S3 for p-values). The following 
comparisons are shown: A, E) S. cerevisiae and S. mikatae, outgroup: S. kudriavzevii. B, F) D. 
melanogaster and D. simulans, outgroup: D. yakuba. C, G) A. thaliana and A. lyrata, outgroup: 
C. rubella. D, H) H. sapiens and P. pygmaeus abelii, outgroup: P. anubis.  
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Figure 5: A) Epistasis between pairs of simulated amino acid mutations is apparent when 
selecting to maintain the wild-type folding energy. Each point represents one pair of simulated 
mutations in one of the three proteins. The additive change in folding energy (DDG1 + DDG2, x-
axis) is on average higher than the epistatic change in folding energy (DDG1,2, y-axis). The 1:1 
line is shown in blue, while the red line shows the linear regression of the points. Without 
interactions between amino acid mutations, the additive and epistatic change in folding energy is 
expected to be equal. However, the epistatic change in folding energy is less than the additive 
expectation. B,C) Clustering between all pairs of simulated mutations show no apparent 
clustering. However, after enriching for epistatic pairs of simulated mutations, clustering is 
observed, even taking only the top 50% of the most epistatic pairs of mutations. Panel B shows 
clustering due to any causes, while panel C shows clustering after normalizing for variation in 
constraint across the proteins. Panels B and C look qualitatively similar, so variation in constraint 
is not a significant driver of the simulated clustering. In all panels, simulations across all three 
simulated proteins (1LAF, 2WM3, and 4Y5J) have been aggregated.  
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